413. Infrared Absorption of Heteroaromatic and Benzenoid Six-membered Monocyclic Nuclei. Part VII.* para-Disubstituted Benzenes.

By A. R. Katritzky and P. Simmons.

Absorption due to the para-disubstituted benzene ring in 69 compounds is recorded. The variations of the positions and intensities of nine characteristic bands with the nature of the substituents are discussed. The intensities of the ring-stretching frequencies at $1600-1400 \mathrm{~cm} .^{-1}$ depend on the charge disturbance of the ring in a manner similar to that in monosubstituted compounds.

Previously we showed that for monosubstituted benzenes, ${ }^{1 a}$ pyridines, ${ }^{1 b}$ pyridine 1 oxides, ${ }^{1 c}$ and pyridine-boron trichloride adducts,* the intensities of the characteristic bands depend on the nature of the substituent. Variations in the intensities of the ring stretching bands at $1600-1400 \mathrm{~cm} .^{-1}$ have been correlated ${ }^{1 d}$ with the charge disturbance created in the ring by the substituents and/or hetero-groups. We now extend this work to polysubstituted compounds; this and the following paper deal respectively with the absorption of the para- and the meta-disubstituted benzene ring.

* Part VI, preceding paper.
${ }^{1}$ Katritzky and his co-workers, $J ., 1598$, (a) 4155, (b) 2198, 2202, 3165, (c) 2192, 2195, (d) 4162, (e) 2182.

Problems in presenting the data arise because there are two substituents (i.e., two variable parameters). Various measures of the effect of a substituent on a benzene ring are available; some examples are given in Table l. There is no order in which substituents can be uniquely arranged; substituents can interact by inductive and mesomeric effects and have different polarisabilities, which can be invoked to a varying degree. However, on the basis of qualitatively similar effects, substituents can be divided into: (i) amino,

Table 1. Mesomeric moments and sigma constants for substituent groups

Substituent	μ_{M}	σ_{p}	$\sigma_{\boldsymbol{m}}$	σ^{\prime}	σ_{R}	Substituent	$\mu_{\text {M }}$	σ_{p}	σ_{m}	σ^{\prime}	$\sigma_{\text {R }}$
NMe_{2}	$1 \cdot 66$	-0.83	-	-	-	Me	$0 \cdot 35$	-0.17	-0.07	-0.05	$-0 \cdot 13$
NH_{2}.	1.02	-0.66	$-0 \cdot 16$		-	Et		-0.15	-0.07	- 0	- 0
OH		-0.37	$+0.12$	$+0.25$	-0.61	Ph	$0 \cdot 0$	-0.01	$+0.06$	$+0 \cdot 10$	-0.09
OMe	0.96	-0.27	$+0.11$	$+0.23$	-0.50	CN	$0 \cdot 45$	$+0.66$	+0.56	$+0.59$	$+0.07$
OEt	-	-0.24	+0.1		-	$\mathrm{CO}_{2} \mathrm{Et}$	0.5	$+0.45$	+0.37	+0.32	$+0.20$
Cl	$0 \cdot 41$	$+0.23$	$+0.37$	$+0 \cdot 47$	-0.24	COMe	0.56	$+0.50$	+0.38	$+0.27$	$+0.25$
Br	$0 \cdot 43$	$+0.23$	$+0.39$	$+0.45$	-0.22	NO_{2}	$0 \cdot 76$	+0.78	+0.71	$+0.63$	+0.15

[^0]hydroxy, and alkoxy groups; (ii) chlorine, bromine, and iodine atoms; (iii) groups with a saturated carbon atom adjacent to the ring; (iv) those attached to the ring by an unsaturated carbon atom; (v) cyano, alkoxycarbonyl, acyl, and nitro groups. For brevity, these substituent types are denoted as follows; donor (d), halogen (x), saturated carbon (s), unsaturated carbon (u), and acceptor (a). The effect on the infrared spectrum of an unsaturated carbon substituent is similar to that of a saturated carbon substituent except when it is para to a (strong) donor or acceptor group (i.e., conditions of high polarisation); therefore, in other environments, these types of substituents are considered together and denoted as " weak (w)." The para-disubstituted benzenes are arranged in Table 2 in the order: dd, dx, xx, ds, xw, ww, du, da, ua, xa, sa, aa. The order for the meta-disubstituted benzenes (following paper) is identical except that categories du and ua disappear, and ds and sa become dw and wa.

The spectra were measured in chloroform, and apparent extinction coefficients were recorded. ${ }^{1}$ Solvent absorption obscured CH deformation modes below $800 \mathrm{~cm} .^{-1}$; the concentration used was not sufficient to distinguish the combination modes at 2000 $1650 \mathrm{~cm} .^{-1}$, and the sodium chloride prism gave poor resolution in the $3000 \mathrm{~cm}^{-1}$ region. Thus, this work is concerned with four ring-stretching modes at $1600-1400 \mathrm{~cm} .^{-1}$, four CH in-plane deformation modes at $1300-1000 \mathrm{~cm} .^{-1}$, and one of the CH out-of-plane deformation modes. The bands observed are recorded in Table 2.

Randle and Whiffen ${ }^{2}$ treated statistically the spectra of many para-disubstituted benzenes and listed arithmetical means and standard deviations for eight characteristic bands in the $1600-800 \mathrm{~cm} .^{-1}$ region. They obtained data from many sources, measured under various conditions, and were unable to give precise intensities or to correlate between intensity and position of a band. McMurry and Thornton ${ }^{3}$ give data for para-dialkylbenzenes, and para-dihalogenobenzenes have been studied in detail. ${ }^{4}$

Ring-stretching Frequencies (Table 2, cols. 1-4).-The first band occurs at 1616-1592 $[1606 \pm 6]^{*} \mathrm{~cm} .^{-1}$ and for certain types of compounds the range is smaller: du, da, and ua at $1608-1597[1602 \pm 3] \mathrm{cm} .^{-1}$; xa, sa, and aa at $1616-1604[1610 \pm 3] \mathrm{cm} .^{-1}$. The

[^1]second band occurs at $1590-1570[1579 \pm 6] \mathrm{cm} .^{-1}$ but is frequently obscured and sometimes absent. The next band is at $1522-1469 \mathrm{~cm}^{-1}$; the position is lowered by halogen atoms and acceptor substituents:

dd, ds, du, ww, da	1522-1504 [1511 $\pm 4] \mathrm{cm} .^{-1}$
dx, xw, ua, sa, aa	1502-1479 [1491 $\pm 7] \mathrm{cm} .^{-1}$
xx , x	1479-1469 [1475 + 4] cm. ${ }^{-1}$

A last band in this region occurs frequently at $1422-1396[1409 \pm 8] \mathrm{cm}^{-1}$ (but at 1392 $1382 \mathrm{~cm}^{-1}$ for dihalogeno-compounds). These bands were previously ${ }^{2}$ reported at $[1620 \pm 8(\mathrm{~m}), 1571 \pm 11(\mathrm{w}), 1512 \pm 12(\mathrm{vs})$, and $1450 \pm 10(\mathrm{~m})] \mathrm{cm} .^{-1}$; the most serious discrepancy in position is that of the last band. Bands at $1656-1633 \mathrm{~cm} .^{-1}$ (5) and $1521-1510 \mathrm{~cm} .^{-1}(100)$ were reported ${ }^{3}$ for dialkyl compounds.
para-Disubstituted benzenes with identical substituents are of V_{h} symmetry; \dagger those with different substituents are of $C_{2 v}$ symmetry. The predictions ${ }^{1 d}$ concerning the intensities of the four ring-stretching frequencies of monosubstituted benzenes, pyridines, etc., of $C_{2 v}$ symmetry should therefore apply. In agreement with this, the intensity* of the A_{1} vibration near $1606 \mathrm{~cm} .^{-1}(\mathrm{I})$ is low when the substituents are of the same type and increases with increasing difference between the substituents. The unsaturated carbon atoms can evidently be polarised by both strong donor and strong acceptor substituents. A nitro-group para to another electron-accepting substituent still causes an appreciable charge disturbance in the molecule; a similar effect has been noted for ultraviolet spectra. ${ }^{5}$

dd, xx, xw, ww, aa \ddagger	$(0-30)[(5)]$
dx, ds	. $30-55)[(45 \pm 10)]$
xa, sa, $\mathrm{aa}^{\prime} \ddagger$	(40-125) [(100 $\pm 20)]$
dv, ua	. $85-240)[(175 \pm 55)]$ §
	. $(200--530)[(340 \pm 100)]$

The B_{1} vibration near $1579 \mathrm{~cm} .^{-1}$ (II) should show intensities that are lower than the previous band but vary with the nature of the substituents in much the same way. ${ }^{1 d} \mathrm{Al}$ though the band is often not resolved or is only partly resolved (shoulder), the band is usually more intense for compounds with substituents of different types and less intense than the preceding mode (except for the halogenonitro-compounds Nos. 50, 51).

dd, dx, xx, xw, w	$(0-15)[(5 \pm 5)]$
ds, du, da, ua, sa.	. $0-95$) [(30 $\pm 25)]$

The intensity of the A_{1} vibration near $1500 \mathrm{~cm} .^{-1}$ (III) should be approximately the same as for benzene (40) for compounds with substituents that interact weakly with the ring. For other substituents it should show variations which cannot be predicted from first principles; ${ }^{1 d}$ for the monosubstituted compounds, donor substituents were found to

[^2]

$$
m^{2}
$$

아요요 TT T T N T T T T T

ज 109 ¢

0
0
0
0
0
1

02
$\stackrel{4}{0}$

1109
$\stackrel{19}{9} 9$

0
0
0
0
∞
∞
0
1

$\begin{array}{ll}1422 & 15 \\ 1412 & 10\end{array}$

10
M 20
OL
ติ8 $0-20102020$ से से

1479
1475

198

1582
1580
Cinc
110
110
 1609
1609

效

ค

$\underset{\underset{\sim}{6}}{*} T$				

e
$=10$
$=1$

§ะ
 まa
ェッロํㅜ

－ 8
$\begin{array}{ll}0 & 10 \\ 0 & 0 \\ 29 & 10 \\ =1\end{array}$

Assignments for symmetry（both $C_{2 v}$ and V_{h} ）and vibration type are given immediately below the column number（cf．rer．2）．by stronger absorption， $\left(\mathrm{CHCl}_{3}\right)$ band masked by solvent，Py pyridyl radical（number indicates position of linkage，unless this is 4），PyO substituted pyridine oxide． ref．4）．（c）A band at $1448 \mathrm{~cm} .^{-1}$（150）is probably due to the 2 －pyridyl nucleus rather than the shoulder at $1425 \mathrm{~cm} .^{-1}$ as previously reported．${ }^{1}$（d）Measured in a $1-\mathrm{mm}$ ．cell．
increase and attractor substituents to decrease the intensity. This is the case here also:

except that the intensity is very irregular for those compounds in which the substituents interact strongly: du, da, ua (20-280) [(120 $\pm 75)]$.

(I) $A_{1}\left(A_{g}\right)$
(II) $B_{1}\left(B_{1 g}\right)$
(III) $A_{1}\left(B_{2 u}\right)$
(IV) $B_{1}\left(B_{3 u}\right)$

The intensity of the B_{1} vibration near $1409 \mathrm{~cm} .^{-1}$ (IV) should be approximately (40) and not vary regularly with the electron-donor or -acceptor ability of the substituents. ${ }^{1 d}$ Agreement is least satisfactory in this case. This region of the spectrum is obscured by substituent absorption for $\mathbf{3 1}$ compounds, and for 8 of these this band appears as a shoulder. Of the remaining compounds, 18 showed no band, and 20 absorb with intensity ($10-55$) $[(30 \pm 15)]$ except that it is higher ($100-120)$ for alkoxycarbonyl compounds. Compounds with electron-accepting substituents tended to show more intense absorption; this was also noticed with monosubstituted compounds. ${ }^{1 d}$

In-plane CH Bending Vibrations (Table 2, cols. 5-8).-Absorption at 1300-1264 cm. ${ }^{-1}$ ($15-85$) $\left[1285 \pm 11 \mathrm{~cm} .^{-1}(35 \pm 25)\right]$ for most of the ua, xa, sa, and aa compounds is presumably the $B_{1}-B_{3 q}$ mode, previously expected, but not found, ${ }^{2}$ near $1290 \mathrm{~cm} .^{-1}$.

The $A_{1}-A_{g}$ mode occurs at $1190-1164[1175 \pm 6] \mathrm{cm} .^{-1}$ except that for aa compounds the frequency is depressed to $1168 \quad 1156[1162 \pm 6] \mathrm{cm}^{-1}$. The intensity depends on the substituents present:

du, da	$(130-320)[(175 \pm 60)]$
dd, dx, ds	(15-115) [(50 $\pm 30)]$
xx, xw	.band absent
all othe	$(0-45)[(15 \pm 10)]$

The $B_{1}-B_{2 u}$ vibration absorbs at $1128-1100[1111 \pm 7] \mathrm{cm} .^{-1}$. The intensity varies with the type of substituents present:

```
dd, dx, xx, ds, xw, ww, du \(\ldots \ldots . . .(15-80)[(25 \pm 15)]\)
da \(\ldots \ldots \ldots(155-440)[(275 \pm 85)]\), when a is the nitro-group;
    otherwise ( \(15-20\) )
ua, xa, sa, aa ...........................(10-135) [(65 \(\pm 35)]\)
```

The $A_{1}-B_{1 u}$ mode occurs at $1022-1004[1013 \pm 5] \mathrm{cm} .^{-1}$; the intensity depends on the substituents:

xx.	(190-330)
xw, xa	(55-160) $[(110 \pm 35)]$
ua, sa, aa	. $10-165$) $[(45 \pm 35)]$
dx, ds, ww	$(0-30)[(15 \pm 10)]$
dd, du, da	absent

The last three bands were previously reported ${ }^{2}$ at $[1179 \pm 7$ (s), 1125 ± 10 (var), and $1018 \pm 10(\mathrm{~s})] \mathrm{cm} .^{-1}$. Bands were found ${ }^{3}$ for p-dialkylbenzenes at $1230-1195 \mathrm{~cm}^{-1}$ (5), $1205-1175 \mathrm{~cm} .^{-1}(5), 1130-1090 \mathrm{~cm} .^{-1}(20), 1070-1035 \mathrm{~cm} .^{-1}(20)$, and $1030-1010$ $\mathrm{cm} .^{-1}(10)$. The positions and intensities of the $A_{1}-B_{1 u}$ band near $1013 \mathrm{~cm} .^{-1}$ given by Randle and Whiffen ${ }^{6}$ for several compounds agree reasonably with the present results; for this band, it was shown ${ }^{5}$ that for p-halogenomethyl- and p-dihalogeno-benzenes, the band intensity increased with the mass sum of the substituents.

Out-of-plane CH Bending Mode (Table 2, col. 9). -The $B_{2}-B_{3 u}$ mode is shown at 828 $808[819 \pm 6] \mathrm{cm} .^{-1}$ for compounds in classes $\mathrm{dd} \longrightarrow$ ww (Nos. 1-24) (except for Nos. $15,16,20$, and 23 where the band is apparently masked by solvent absorption below 805) and at $857-824[841 \pm 10] \mathrm{cm} .^{-1}$ for the other compounds (except for No. 52 with a frequency of $816 \mathrm{~cm} .^{-1}$; the cyano-group often does not behave as a strong electron acceptor; cf. ref. 1). The intensity is ($60-240$) [($155 \pm 50)]$ for compounds in classes $\mathrm{dd} \longrightarrow$ xa (Nos. $1-51$), but for compounds of the sa class it is often much lower ($30-165$), and in the aa class the intensity is very high for the dinitro-compound (No. 69), very low for the dialkoxycarbonyl compounds (Nos. 61, 62), and intermediate for the others.

This band has been much studied previously. Ranges of $\left[817 \pm 13\right.$ (vs)], ${ }^{2} 833-810$ (200),,3,7 and $860-800 \mathrm{~cm} .^{-18}$ have been suggested. Many individual values for the band position have been quoted (see, e.g., refs. 9-11) which generally agree well with our values. Attempts have been made to correlate the positions of the band with Hammett's σ values ${ }^{\mathbf{1 0}}$ and with shifts observed in monosubstituted benzenes. ${ }^{11}$

Substituent Bands.-With few exceptions, all other bands of $\varepsilon_{\mathrm{A}} \geqslant 15$ for these compounds could be assigned to the substituents. Those for pyridine and pyridine l-oxide rings have already been published. ${ }^{1}$

Experimental.-The preparations of the compounds containing a pyridine or pyridine 1 -oxide ring have been given elsewhere. ${ }^{1,12}$ The other compounds were commercial products or were prepared by standard methods. All compounds were recrystallised or redistilled immediately before measurement and had melting or boiling points in agreement with literature values.

The spectra were measured on the Oxford Perkin-Elmer 21 spectrophotometer with a sodium chloride prism, slit programme 4, and the settings previously reported. ${ }^{1 e} \varepsilon_{\mathrm{A}}$ values were calculated as before (see ref. la).

The Dyson Perrins Laboratory, Oxford.
The University Chemical Laboratory, Cambridge.
[Received, November 17th, 1958.]

[^3]
[^0]: μ_{M} represents mesomeric moments of benzenes (cf. Everard and Sutton, J., 1951, 2818, and references therein).
 $\sigma_{p}, \sigma_{m}, \sigma^{\prime}$, and σ_{R} represent, respectively, Hammett's sigma para and meta constants, polar substituent constants, and resonance substituent constants (see Taft, in Newman's " Steric Effects in Organic Chemistry," Wiley, New York, 1956, p. 556 et seq., and McDaniel and Brown, J. Org. Chem., 1958, 23, 420).

[^1]: ${ }^{2}$ Randle and Whiffen, Paper No. 12, Report on Conference of Molecular Spectroscopy, 1954 , Institute of Petroleum.
 ${ }^{3}$ McMurry and Thornton, Analyt. Chem., 1952, 24, 318.
 ${ }^{4}$ Stojiljković and Whiffen, Spectrochim. Acta, 1958, 12, 47, 57.

[^2]: * Parentheses indicate apparent molecular extinction coefficients and square brackets arithmetical means and standard deviations. The intensities of shoulders and superimposed bands and the positions of shoulders are not treated statistically.
 \dagger The designation of the symmetry species of the vibration is not unambiguous for $V_{\boldsymbol{h}}$ molecules. In our work, as in ref. 4, yz is taken as the plane of the molecule, with the z axis passing through the substituents; in ref. 2 (published before the recommendations of J. Chem. Phys., 1955, 23, 1997) another convention has been used.
 \ddagger Here aa indicates identical acceptor groups (Nos. 61, 62, 69), and aa' different acceptor groups (Nos. 63-68).
 § Except No. 25 for which the intensity is (500).
 ${ }^{5}$ Schubert, Craven, Steadly, and Robins, J. Org. Chem., 1957, 22, 1285.

[^3]: ${ }^{6}$ Randle and Whiffen, Trans. Faraday Soc., 1956, 52, 9.
 7 Jones and Sandorfy, in Weissburger, "Techniques of Organic Chemistry, Vol. IX. Chemical Applications of Spectroscopy," Interscience Publ. Inc., London 1956, p. 391.
 ${ }^{8}$ Bellamy, "The Infrared Spectra of Complex Molecules," Methuen, London, 1958, 2nd Edn., p. 65; Colthup, J. Opt. Soc. America, 1950, 40, 397.
 ${ }^{9}$ Whiffen and Thompson, J., 1945, 268; Bell, Thompson, and Vago, Proc. Roy. Soc., 1947, A, 192, 498; Cole and Thompson, Trans. Faraday Soc., 1950, 46, 103.
 ${ }^{10}$ Bellamy, J., 1955, 2818.
 11 Margoshes and Fassell, Spectrochim. Acta, 1955, 7, 14.
 ${ }^{12}$ Hands and Katritzky, J., 1958, 1754.

